Ab Initio Molecular Orbital Calculations of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ Isomers

A. M. Mebel and M. C. Lin*
Contribution from the Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received May 6, 1994*

Abstract

The structures and energetics of [4 geometric isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$, including phenyl peroxy $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}\right)$, hydroperoxy phenyl $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OOH}\right)$, seven-membered ring $\mathrm{C}_{6}(\mathrm{O}) \mathrm{H}_{5} \mathrm{O}$ isomer, three isomers of hydroxyl phenoxy $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-\right.$ (OH)], seven isomers of $\mathrm{OC}_{6} \mathrm{H}_{5} \mathrm{O}$ (including the three with epoxy structures), and a stable dual-ring $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{O}_{2} \pi$-complex have been calculated by ab initio molecular orbital methods. Geometries have been optimized at the UHF/6-31G* level, and their relative energies with respect to $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ have been refined by the spin-projected UMP3(PUMP3) method with UHF/6-3[G* zero-point energy corrections. All $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ isomers identified except $m-\mathrm{OC}_{6} \mathrm{H}_{5} \mathrm{O}$, which is not a local minimum, are more stable than the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ reactants. The most stable isomers are the three $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-$ (OH) radicals, which are $\left[05-\left[10 \mathrm{kcal} /\right.\right.$ mol below $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$. They are followed by the seven-membered ring C_{6} $(\mathrm{O}) \mathrm{H}_{5} \mathrm{O}$, the m-epoxy isomer, other $\mathrm{OC}_{6} \mathrm{H}_{5} \mathrm{O}$ radicals, and the initial adduct $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}$, which is $4 \mathrm{I} \mathrm{kcal} / \mathrm{mol}$ lower than $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$. The π-complex, formed by the association of $\mathrm{C}_{6} \mathrm{H}_{5}$ with O_{2} at the center of the $\mathrm{O}=\mathrm{O}$ bond, is 27 $\mathrm{kcal} / \mathrm{mol}$ below the reactants. The $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OOH}$ radical, which may be formed by intramolecular H -abstraction, is more stable than $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ by $9 \mathrm{kcal} / \mathrm{mol}$. The results suggest that several mechanisms may be involved in the $\mathrm{C}_{6} \mathrm{H}_{5}+$ O_{2} reaction. Vibrational frequencies determined for each isomer at the UHF/6-3 [G* level of theory have been discussed.

Introduction

The reaction of the phenyl $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ radical with O_{2} is relevant not only to the chemistry of incipient soot formation but also to the combustion of aromatic hydrocarbons, which are important ingredients of lead-free gasoline. ${ }^{1.2}$ At high temperatures, the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ reaction competes effectively with the polymerization process, $\mathrm{C}_{6} \mathrm{H}_{5}+n \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow$ PAHs (polyaromatic hydrocarbons), which are believed to be the building blocks of soot particles in hydrocarbon combustion. ${ }^{1.3}$

The $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ reaction at high temperatures ($T \geq(000 \mathrm{~K}$) has been assumed to take place primarily via the metathetical process

$$
\begin{equation*}
\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}+\mathrm{O} \tag{1}
\end{equation*}
$$

yielding a phenoxy radical which fragments to give $\mathrm{C}_{5} \mathrm{H}_{5}+\mathrm{CO}$ above 900 K .4 .5 Other minor reaction channels producing H atoms and o - or p-benzoquinone have also been invoked: ${ }^{6}$

$$
\begin{equation*}
\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2} \rightarrow \mathrm{H}+o / p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2} \tag{2}
\end{equation*}
$$

The validity of these reactions occurring presumably via ringintermediates producing benzoquinones as indicated, albeit conceptually attractive, has not yet been confirmed theoretically.

In order to elucidate the mechanism of this important reaction, we have recently carried out extensive ab initio molecular orbital calculations for the structures and energetics of the geometric isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$. On account of the great stability of the aromatic ring structure, we centered our calculations on the aromatic isomers resulting from the migration of one of the two O atoms. Earlier, the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}$ isomer of this radical was

[^0]calculated by Sakai, Yamada, and co-workers ${ }^{7}$ by the HF/STO3G method in connection with $\mathrm{ROO}^{\bullet}+\mathrm{RH} \rightarrow \mathrm{ROOH}+\mathrm{R}^{\cdot}$ hydrogen abstraction reactions. Ladik has studied the same isomer and its substituted derivatives to calculate hyperfine coupling constants for EPR spectra using UHF wave functions. ${ }^{8}$ Recently, Carpenter calculated some intermediates and transition states for the oxidative cleavage of phenyl radical using the semiempirical PM3 method. ${ }^{9}$ However, no study of different isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ at higher levels of theory has been performed.

Calculation Methods

The geometries of different structures of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ have been optimized at the UHF/6-3[G* level. ${ }^{10}$ Vibrational frequencies have been calculated at the same level of theory for characterization of the nature of stationary points, for zero-point corrections and prediction of vibrational spectra. As has been shown recently, the UHF/6-3[G* approximation gives the geometries for the phenoxy ($\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$) radical as well as for intermediates and transition states of its decomposition in reasonable agreement with higher level UMP2 and CASSCF methods. ${ }^{11}$ We expect that the geometric parameters of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ structures obtained at the UHF level are of semiquantitative accuracy, and the more accurate geometries may be achieved with the use of the methods taking into account dynamic and nondynamic electron correlation. The UHF wave function can be subject to very serious spin contamination, one can see in Table I that $\left\langle S^{2}\right\rangle$ values before projection reach [.2-2.2 as compared to 0.75 for a pure doublet state. The UHF method may lead to artificially low relative energies for those isomers having large spin contamination. To obtain more reliable energies of the isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$, we carried out UMP4(SDQ)/6-3[G* calculations ${ }^{10}$ at the UHF optimized geometries. The spin projected PUMP2 and PUMP3 energies are expected to be more reliable than the energies calculated by the regular UMP2, UMP3, or UMP4 (SDQ) methods. Therefore,

[^1]
$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{2} \mathrm{~A}_{1}\right)$ $+\mathrm{O}_{2}$

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{2} \mathrm{~B}_{1}\right)$
+O
$$
+0
$$

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$ (ortho, $\mathrm{C}_{2 \mathrm{v}},{ }^{1} \mathrm{~A}_{1}$) $+\mathrm{H}$

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\left(\right.$ para $\left., \mathrm{D}_{2 \mathrm{~h}},{ }^{1} \mathrm{~A}_{\mathrm{g}}\right)$
+H

(1), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}, \mathrm{C}_{\mathrm{s}},{ }^{2} \mathrm{~A}^{\prime \prime}$

(2), $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{O}_{2}\right), \mathrm{C}_{2 \mathrm{v}},{ }^{2} \mathrm{~B}_{1}$

(3d), $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{O})(\mathrm{O})$, doublet, C_{1}

(3q), $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{O})(\mathrm{O})$, quartet, $\mathrm{C}_{2 \mathrm{w}},{ }^{4} \mathrm{~A}_{1}$

(4), $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H})$, ortho, C_{1}

(5), $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H})$, para, $\mathrm{C}_{\mathrm{s}},{ }^{2} \mathrm{~A}^{\prime \prime}$

(6), $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H})$, meta, TS, C_{1}

(7), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}(\mathrm{O})_{b r}$, ortho, C_{1}

(8), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}(\mathrm{O})_{\text {br }}$, meta, C_{1}

(9), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}(\mathrm{O})_{b r}$, para, C_{1}

(13), $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OOH}), \mathrm{C}_{1}$

(14), $\mathrm{C}_{6} \mathrm{OH}_{5} \mathrm{O}, \mathrm{C}_{\mathrm{s}},{ }^{2} \mathrm{~A}^{\prime \prime}$

Figure 1. UHF/6-31G* optimized geometries and PUMP3/6-31G*+ZPE relative energies (in kcal/mol, with respect to $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$).
we consider the PUMP3/6-31G*//UHF/6-31G* + ZPE (UHF/ $6-31 G^{*}$) method as the best one in the present study. The calculated ZPE were scaled by 0.893 to account for anharmonicity. ${ }^{10}$ The calculations have been performed using the GAUSSIAN 92 program. ${ }^{12}$

Geometries and Relative Energies of the Isomers

The different isomers of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ radical can be divided in six groups as shown in Figure 1:

1. (1-3): Two oxygen atoms are connected with each other and/or with the same carbon atom of the ring.
2. (4-6): One of the oxygen atoms forms a double bond with the C atom, and another one is bound to the other C in the ortho, meta, or para position forming a $\mathrm{C}(\mathrm{H})(\mathrm{O})$ group.
3. The (7-9) group contains epoxy isomers where in addition to a $\mathrm{C}=\mathrm{O}$ double bond, the second O atom occupies some bridging position with respect to the C_{6} ring.
4. The structures (10-12) include a $\mathrm{C}=\mathrm{O}$ double bond and a terminal OH group in the ortho, para, or meta location relative to the $\mathrm{C}=\mathrm{O}$.
5. One isomer, 13, has a hydroperoxy OOH ligand with one C atom and no ligand with the adjacent carbon.
6. The structure 14 , recently proposed by Carpenter, ${ }^{9}$ contains six carbon atoms and one oxygen atom forming a seven-membered ring, with the second O attached to one of the two C atoms connected with the O atom in the ring, giving rise to the $-\mathrm{C}=\mathrm{O}$ -(O)- group.

The relative energies of the various geometric isomers shown in Figure 1, with respect to $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ calculated at different levels

[^2]of theory, are presented in Table 1. Figure 2 shows the characters of bonds in $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$.

The phenyl peroxy radical, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}(1)$, is formed in the reaction of the phenyl radical, $\mathrm{C}_{6} \mathrm{H}_{5}$, with molecular oxygen. The calculated exothermicity of these biradical reactions is $41.0 \mathrm{kcal} /$ mol at the PUMP3//UHF/6-31G* + ZPE (UHF/6-31G*), at which level all the energies will be reported hereafter unless otherwise indicated, in good agreement with an experimental estimate of $37 \mathrm{kcal} / \mathrm{mol}^{13}$ and the value calculated by the BACMP4 method ($40 \mathrm{kcal} / \mathrm{mol}$). ${ }^{14} \quad 1$ has a planar structure of C_{s} symmetry and ${ }^{2} \mathrm{~A}^{\prime \prime}$ ground electronic state. The unpaired electron in this radical is located on the terminal oxygen atom perpendicularly to the molecular plane. In going from $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}(1)$ the $\mathrm{O}-\mathrm{O}$ bond is stretched by as much as $0.13 \AA$, and a new single $\mathrm{C}-\mathrm{O}$ bond is created. The aromaticity of the phenyl radical is preserved in $\mathbf{1}$; all $\mathrm{C}-\mathrm{C}$ bond lengths in the ring are similar, $1.38-1.39 \AA$. The $\mathrm{C}^{6} \mathrm{C}^{1} \mathrm{C}^{2}$ angle with the carbon atom interacting with O_{2} slightly reduces as compared with the corresponding angle in $\mathrm{C}_{6} \mathrm{H}_{5}$ but remains somewhat higher than 120°. The distance between the terminal oxygen and hydrogen atoms in the ortho position is $2.41 \AA$, implying only very weak hydrogen bond type interaction.

The isomer 2 is the π-complex of O_{2} with the $\mathrm{C}_{6} \mathrm{H}_{5}$ radical. 2 is an analog of the $\mathrm{H}_{2} \mathrm{CO}_{2}$ dioxirane ${ }^{15}$ and the $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ dioxiranylvinyl radical. ${ }^{9}$ This structure is about $14 \mathrm{kcal} / \mathrm{mol}$ less stable than the initial adduct 1 but still more favorable than $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ by $27.4 \mathrm{kcal} / \mathrm{mol}$ at our best PUMP3 level. The energy difference between vinylperoxy and dioxiranylvinyl $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ isomers is $6.3 \mathrm{kcal} / \mathrm{mol}$ at the PMP4(SDTQ)//UMP2/

[^3]

1

2

- 5

Figure 2. Characters of bonding in $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OO}$, and various isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$

6-3[IG(d) level. ${ }^{9}$ Meanwhile, dioxirane is well established to be more stable than its dioxygen ylide $\mathrm{H}_{2} \mathrm{COO} .{ }^{16}$ The calculated energy difference between the two is $32.9 \mathrm{kcal} / \mathrm{mol}$ at the MP4/ $/ \mathrm{HF} / 3-2$ [Glevel and 22.I kcal/mol at the QCISD(T)//QCISD/ 3-2 [G level. ${ }^{16}$ The lesser stability of 2 relative to 1 can be attributed to the loss of aromaticity of the ring in the π-complex. We found a clear bond alternation in 2: ortho $\mathrm{C}^{1} \mathrm{C}^{2}$ and $\mathrm{C}^{6} \mathrm{C}^{1}$ bonds become single ($\left[.48 \AA\right.$), meta $\mathrm{C}^{2} \mathrm{C}^{3}$ and $\mathrm{C}^{5} \mathrm{C}^{6}$ turn to double bonds ($1.37 \AA$), and para $\mathrm{C}^{3} \mathrm{C}^{4}$ and $\mathrm{C}^{4} \mathrm{C}^{5}$ bonds have an intermediate length of $1.42 \AA$. The CCC angle with the C^{1} atom connecting to O_{2} sharpens to [16.6°. The bond alternation in 2 is more pronounced than that in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$ with a double $\mathrm{C}=\mathrm{O}$ bond. The σ-bond in O is conjugated with π electronic orbitals of the C_{6} ring. While the $\mathrm{O}-\mathrm{O}$ distance in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} 2,[.44 \AA$, is strained by $0.14 \AA$, as compared to that in 1 , it is significantly shorter than the $\mathrm{O}-\mathrm{O}$ bond length in the dioxirane, $1.52 \AA$, at the similar UHF levels of theory. It is worth noting that the geometry of dioxirane does not change much from the UHF/ 3-2 [G to QCISD/6-3 [G* levels of theory. ${ }^{16}$ Therefore, UHF/ 6-3 [G* optimized geometry of 2 seems to be quite reliable. 2 has $C_{2 v}$ symmetry. Two oxygen atoms and the carbon atom C^{1} form an almost equilateral triangle. The ground electronic state of 2 is ${ }^{2} B_{1}$, and the unpaired electron is spread out between the carbon atoms in the plane perpendicular to the C_{6} plane and is involved in the π electronic system of the ring. As far as we know, no such stable alkyl $\cdot \mathrm{O}_{2}$ complexes have been reported before except the alkenyl analog, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. ${ }^{9}$

In the isomers 3 d and 3 q , the $\mathrm{O}-\mathrm{O}$ bond is broken, and the C^{1} atom is connected with the two oxygens by single bonds. As a result, both O atoms have one unpaired electron. The structure is akin to that of $\mathrm{OCH}_{2} \mathrm{O}$ dioxymethane biradical which has a triplet ground electronic state. ${ }^{16}$ For $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$, however, the lower spin doublet structure 3 d is more preferable than the $3 q$ quartet by $8 \mathrm{kcal} / \mathrm{mol}$. The optimized geometries of 3d and 3q are similar,

[^4]but the latter is symmetric ($C_{2 v}$), while the former has no symmetry. The structure of 3 d is close to $C_{2 v}$ but slightly distorted. The doublet electronic state for the symmetric $3 q$ geometry is still lower than the quartet state and higher than the energy of 3 d by only $0.4 \mathrm{kcal} / \mathrm{mol}$ at the UHF $/ 6-3\left[\mathrm{G}^{*}\right.$ level. The lowest doublet state of 3 q , which has similar electronic structure with 3 d , is ${ }^{2} \mathrm{~A}_{1}$. An unpaired electron of one of the oxygen atoms is coupled with the unpaired one of the C_{6} ring. This coupling leads to distortion of geometry of 3 d from the $C_{2 v}$ symmetry. The ground quartet state of $3 q$ is ${ }^{4} \mathrm{~A}_{1}$, and three unpaired electrons are located on the two oxygens and in the π-system of the ring. 3 d and 3 q have close geometries with an OO distance about 2.30 \AA and an OCO angle of [[I-[[2°. The CO bond lengths do not change almost as compared to that in 2. The CC bond alternation in 3 d and 3 q is stronger than that in 2 , single ortho CC bonds are $0.03-0.04 \AA$ longer. The critical $\mathrm{C}^{6} \mathrm{C}^{1} \mathrm{C}^{2}$ angle in 3 d and 3 q becomes closer to the tetrahedral angle showing sp ${ }^{3}$ hybridization for the "active" carbon atom. 3d is $14.8 \mathrm{kcal} / \mathrm{mol}$ less stable than the π-complex 2, in the PUMP3//UHF/6-3 [G* approximation, that is compatible with the energy difference of [1.2 or [2.4 $\mathrm{kcal} / \mathrm{mol}$ between the dioxirane and dioxymethane biradical at the PUMP4//UMP2/6-31G* and QCISD(T)//QCISD/6-3 [G* levels of theory. ${ }^{16}$ Note, for the $\mathrm{OCH}_{2} \mathrm{O}$ biradical, on going from the UHF /3-2 [G to the QCISD $/ 6-3$ [G^{*} level the CO bond length is shortened by $0 .[\AA$, while the OO distance change is less significant. ${ }^{16}$ Similar changes of the geometry at higher levels of theory can be expected for $\mathbf{3 d}$ and $\mathbf{3 q}$.

The isomers 4 and 5 contain $\mathrm{C}=\mathrm{O}$ double bonds and $\mathrm{C}(\mathrm{H})(\mathrm{O})$ groups in the ortho and para position, respectively. Both structures are significantly more stable than 1 , and the energy gain with respect to $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ is 54.8 for 4 and $61.2 \mathrm{kcal} / \mathrm{mol}$ for 5 . The unpaired electron in both structures is located on the oxygen atom having a single bond with the carbon of the ring. 5 has C_{s} symmetry, and the symmetry plane is perpendicular to the plane of the ring. The ground electronic state of 5 is $^{2} \mathrm{~A}^{\prime \prime}$; the single occupied orbital is parallel to the C_{6} plane. This is also the case for the structure 4. In the same manner as in 2 and 3 , the ring in 4 and 5 structures includes two long single C - C bonds (I.5[$[.53 \AA$) and two short $C=C$ double bonds ($[.36-[.38 \AA$) in 5 as well as two CC bonds of an intermediate length (1.44-I.48 \AA). The smallest CCC angle is found for the carbon of the HCO group ($114-\left[15^{\circ}\right.$); it is followed by the angle with the C atom of the $\mathrm{C}=\mathrm{O}$ double bond ($\left[19^{\circ}\right.$ and $\left[16^{\circ}\right.$). The HCO angle is close to the tetrahedral value. CH bonds in the HCO groups are slightly elongated as compared to the regular CH distance of [.074-[. $075 \AA$. The CO single bond is also found to be longer than those in 1-3.

It is well known that there is no meta isomer for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$ benzoquinone. ${ }^{17}$ We were also unable to find any local minimum for the meta configuration of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H})$. The meta structure 6 is determined to have one imaginary frequency and to be a transition state on the potential energy surface of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ species. The energy of 6 is $3.5 \mathrm{kcal} / \mathrm{mol}$ higher than that of $\mathrm{C}_{6} \mathrm{H}_{5}$ $+\mathrm{O}_{2}$. The instability of 6 can be explained by considering the bond character for this structure. To maintain the valence for all carbon atoms to be equal to four, the unpaired electron has to be delocalized between $\mathrm{C}^{1}, \mathrm{C}^{3}, \mathrm{C}^{4}, \mathrm{C}^{5}, \mathrm{C}^{6}$ and oxygen connecting with C^{1} (see Figure 2). As a result, the $\mathrm{C}^{1} \mathrm{O}$ distance, $1.27 \AA$, is longer than a regular double CO bond but shorter than a regular single CO bond. The second oxygen atom connecting with C^{3} by a shortened single bond (I.3I \AA) has to be negatively charged O^{-}, which was confirmed by the data of Mulliken population analysis. Akin to the $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}^{+}-\mathrm{O}^{-}$carbonyl ylide, ${ }^{16}$ this electronic structure is unfavorable.

The isomers 7-9 form the epoxy group of structures. Although they differ geometrically only by the position of the bridging oxygen, their electronic structures are distinct. 7 is the least stable isomer of the three. It lies $49.0 \mathrm{kcal} / \mathrm{mol}$ below the

Table 1. Relative Energies (kcal/mol) and Zero-Point Energy Corrections of Various Isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$

species	$\left\langle S^{2}\right\rangle^{a}$	ZPE(NIMAG) ${ }^{\text {b }}$	$E_{\text {rel }}{ }^{\text {c }}$					
			HF	UMP2	PUMP2	UMP3	PUMP3	UMP4(SDQ)
$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{C}_{20}{ }^{2} \mathrm{~A}_{1}\right)+\mathrm{O}_{2}{ }^{\text {d }}$	1.43	53.6(0)	-379.68298	-380.68400	-380.71751	-380.72411	-380.74920	-390.74558
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{C}_{20},{ }^{2} \mathrm{~B}_{1}\right)+\mathrm{O}$	1.39	53.6(0)	-47.7	-10.0	-10.4	-20.6	-21.6	-19.6
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$ (ortho, $\left.\mathrm{C}_{2 v},{ }^{1} \mathrm{~A}_{1}\right)+\mathrm{H}$	0.0	51.6(0)	-25.0	-78.4	-57.3	-66.0	-50.2	-64.5
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$ (para, $\left.D_{2 h},{ }^{2} \mathrm{~A}_{8}\right)+\mathrm{H}$	0.0	51.6(0)	-33.9	-85.5	-62.4	-73.6	-57.9	-79.7
1, $C_{s},{ }^{2} \mathrm{~A}^{\prime \prime}$	0.77	$57.7(0)$	-16.2	-63.3	-44.5	-55.4	-41.0	-51.6
2, $\mathrm{C}_{2 v},{ }^{2} \mathrm{~B}_{1}$	1.21	$55.7(0)$	-0.5	-34.9	-28.9	-31.3	-27.4	-30.9
3d, $C_{1},{ }^{2} \mathrm{~A}$	2.23	54.4(0)	-25.5	-1.5	+3.6	-13.1	-12.6	-11.4
3q, $C_{2 v},{ }^{4} \mathrm{~A}_{1}$	4.23	54.3(0)	-24.9	0.0	+9.9	-11.8	-4.6	-9.8
$4, C_{1},{ }^{2} \mathrm{~A}$	1.57	55.9(0)	-52.1	-49.9	-46.7	-54.9	-54.8	-54.7
5, $C_{s,}{ }^{2} \mathrm{~A}^{\prime \prime}$	0.76	58.3(0)	-46.9	-77.6	-57.8	-76.3	-61.2	-73.2
6, $C_{1},{ }^{2} \mathrm{~A}$	1.05	54.3(1)	+19.2	-7.3	+3.3	-4.2	+3.5	-6.0
7, $C_{1},{ }^{2} \mathrm{~A}$	0.78	57.8(0)	-25.4	-67.0	-48.3	-62.2	-49.0	-59.2
8, $C_{1},{ }^{2} \mathrm{~A}$	1.11	57.0(0)	-54.1	-85.5	-78.0	-81.8	-76.3	-81.1
9, $C_{1},{ }^{2} \mathrm{~A}$	1.23	56.6(0)	-45.3	-70.5	-64.5	-69.1	-65.4	-68.3
10, $C_{s},{ }^{2} \mathrm{~A}^{\prime \prime}$	1.31	56.8(0)	-92.5	-113.1	-110.5	-112.3	-110.9	-111.4
11, $C_{s},{ }^{2} \mathrm{~A}^{\prime \prime}$	1.33	56.3(0)	-89.1	-106.3	-104.5	-106.6	-107.1	-105.6
12, $C_{s},{ }^{2} \mathrm{~A}$	1.35	56.2 (0)	-88.9	-104.6	-103.4	-105.2	-105.0	-104.3
13, $C_{1},{ }^{2} \mathrm{~A}$	1.41	56.1 (0)	+10.5	-11.5	-7.7	-11.0	-9.3	-9.6
14, $C_{s},{ }^{2} \mathrm{~A}^{\prime \prime}$	1.25	56.5(0)	-75.7	-98.1	-93.0	-94.9	-91.8	-95.3

[^5]reactants. The bridging oxygen is located in the ortho position with respect to the terminal CO bond. The latter is more like a single bond, and the unpaired electron is located on the terminal oxygen, while the corresponding molecular orbital is perpendicular to the ring plane. In the ring we can see two double $\mathrm{C}=\mathrm{C}$ bonds ($\mathrm{C}^{3} \mathrm{C}^{4}$ and $\mathrm{C}^{5} \mathrm{C}^{6},[.33 \AA$) and four single $\mathrm{C}-\mathrm{C}$ bonds ($[.46-I .50$ \AA). The bridged CC bond is the longest one. CO distances for the bridging oxygen are close to the regular single CO bonds. The geometry of the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bridge is the common feature of the structures 7-9. The CCC angles with the carbon atoms involved in the CO or COC bonds are reduced to $117-119^{\circ}$.

The meta isomer 8 is the most stable epoxy structure, 76.3 $\mathrm{kcal} / \mathrm{mol}$ below $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$. As shown in Figure 2, the unpaired electron is distributed between $\mathrm{C}^{4}, \mathrm{C}^{5}$, and C^{6} atoms at the MO perpendicular to the ring plane. The terminal CO bond is a typical double bond ($1.22 \AA$). $\mathrm{C}^{4} \mathrm{C}^{5}(1.39 \AA)$ and $\mathrm{C}^{5} \mathrm{C}^{6}(1.40 \AA)$ are closer to double bonds; the other CC are single bonds ([.45[.50 \AA). The bridged $C C$ bond ($\mathrm{C}^{2} \mathrm{C}^{3}, \mathrm{I} .47 \AA$) is slightly shorter than that in 7 but close to that in 9 .
The p-epoxy isomer 9 lies $65.4 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$. It has the unpaired electron spread out mostly between the terminal oxygen atom and C^{1} and C^{2} perpendicularly to the ring plane. Therefore, the $\mathrm{C}^{1} \mathrm{O}$ bond ($1.25 \AA$) is longer than a regular double bond, and $\mathrm{C}^{1} \mathrm{C}^{2}([.43 \AA)$ is shorter than a regular CC single bond. $\mathrm{C}^{5} \mathrm{C}^{6}(1.35 \AA)$ is rather a double bond, and the rest are single bonds.

The ortho, para, and meta hydroxyl isomers $\mathbf{1 0 - 1 2}$ form the group of the most stable structures lying 1 [0.9, 107.[, and 105.0 $\mathrm{kcal} / \mathrm{mol}$ below the reactants, respectively. 10-12 are geometric and electronic analogs of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$ with one of the hydrogens replaced by the OH group. In all three radicals, the unpaired electron is distributed between six carbons and terminal oxygen. The corresponding single occupied MO includes contributions of π p-atomic orbitals of these atoms. The $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$ phenoxy radical has $C_{2 v}$ symmetry, and its ground electronic state is ${ }^{2} \mathrm{~B}_{1} .10-12$ have a plane of symmetry coinciding with the ring plane (C_{s} symmetry), and their ground electronic state is ${ }^{2} \mathrm{~A}^{\prime \prime}$. The terminal $\mathrm{C}^{1} \mathrm{O}$ bond ($1.25 \AA$) in all four radicals is slightly elongated as compared to a regular $\mathrm{C}=\mathrm{O}$ double bond; the $\mathrm{C}^{6} \mathrm{C}^{1} \mathrm{C}^{2}$ angle is [$18-1\left[9^{\circ}\right.$. The bond alternation in the C_{6} ring is not very strong; ortho $\mathbf{C}^{1} \mathbf{C}^{2}$ and $\mathbf{C}^{1} \mathrm{C}^{6}$ bonds are somewhat longer ($1.44 \AA$), meta $\mathrm{C}^{2} \mathrm{C}^{3}$ and $\mathrm{C}^{5} \mathrm{C}^{6}$ are shorter ($1.38-\mathrm{I} .39 \AA$), and para $\mathrm{C}^{3} \mathrm{C}^{4}$ and $\mathrm{C}^{4} \mathrm{C}^{5}$ are in the middle ($1.40-\mathrm{I} .41 \AA$). The geometry of the ring does not depend on the position of the OH group.

The most stable isomer in this group is the ortho structure 10.

This may be attributed to the weak hydrogen bond-like interaction between the terminal oxygen and hydrogen of the OH group. Such bonding is possible only in ortho $\mathbf{1 0}$ but is absent in 11 and 12. The hydrogen atom of the OH group is attracted by the O atom, the distance between them is $2 .\left[9 \AA\right.$. The $\mathrm{C}^{1} \mathrm{C}^{2} \mathrm{O}, 1\left[8.6^{\circ}\right.$, and $\mathrm{C}^{2} \mathrm{OH}, 108.5^{\circ}$, angles in 10 are noticeably smaller than the corresponding $\mathrm{C}^{3} \mathrm{C}^{4} \mathrm{O}$ and $\mathrm{C}^{4} \mathrm{OH}$ angles in 11 and $\mathrm{C}^{2} \mathrm{C}^{3} \mathrm{O}$ and $\mathrm{C}^{3} \mathrm{OH}$ angles in 12.

We speculate also the existence of another conformer of $\mathbf{1 0}$ where the OH group would be rotated around the $\mathrm{C}^{2} \mathrm{O}$ axis by 180° and H would be in an anti position to the other O atom. Its energy would be close to those of 11 or $\mathbf{1 2}$, since $\mathrm{O} \cdots$ H hydrogen bond would be impossible. For 12, the existence of the second conformer with a close energy is also expected. For 11, as well as for each conformer of $\mathbf{1 0}$ and $\mathbf{1 2}$ another enantiomer can exist.
The structure 13, hydroperoxyl phenyl radical, is a direct analog of $\mathrm{C}_{6} \mathrm{H}_{5}$ where one of the hydrogens is replaced by the hydroperoxy group (OOH). The isomer is only $9.3 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$. In a similar manner as in $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{C}_{2 v},{ }^{2} \mathrm{~A}_{1}\right)$, the unpaired electron in $\mathbf{1 3}$ is located on the "bare" C^{2} atom in the plane of the ring. The ring aromaticity is preserved; all CC bonds have similar lengths of $1.39-\left[.40 \AA\right.$. The $\mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}$ angle is somewhat larger at 120° similar to the corresponding $\mathrm{C}^{6} \mathrm{C}^{1} \mathrm{C}^{2}$, and $\mathrm{C}^{2} \mathrm{C}^{3} \mathrm{C}^{4}$ angles are about $\left[18^{\circ}\right.$. The H atom of the OOH group is turned out of the ring plane, and 13 therefore possesses only C_{1} symmetry. Other isomers of the $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OOH})$ radical with different mutual disposition of the "bare" C atom and the OOH group are also possible. However, we expect them to have similar energies, geometric, and electronic structures as 13. Moreover, the other forms of the hydroperoxyl phenyl radical do not seem to be relevant to the kinetics of the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ reaction, and we did not investigate them.

In the structure 14, six carbon atoms and one oxygen atom form a seven-membered ring. The second O atom is attached to one of the two C atoms connected with the oxygen in the ring, forming a $\mathrm{C}=\mathrm{O}$ double bond. 14 lies $91.8 \mathrm{kcal} / \mathrm{mol}$ below the reactants. Interestingly, the $\mathrm{H}_{2} \mathrm{COC}(\mathrm{O})(\mathrm{H})$ structure with the COC chain and $\mathrm{C}=\mathrm{O}$ double bond is $97.5 \mathrm{kcal} / \mathrm{mol}$ lower than $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{O}_{2}$ at the PMP4(SDTQ)//UMP2/6-3[1G(d) level. ${ }^{9}$ $\mathrm{C}_{6}(\mathrm{O}) \mathrm{H}_{5} \mathrm{O} 14$ has a planar structure and ${ }^{2} \mathrm{~A}^{\prime \prime}$ ground electronic state. The unpaired electron is distributed between $\mathrm{C}^{2}, \mathrm{C}^{3}, \mathrm{C}^{4}$, C^{5}, and C^{6} atoms at the $\pi \mathrm{MO}$. The CO bond in the ring has a single character ($1.35-1.36 \AA$), while the out-of-ring CO bond is a regular double bond ([.[9 \AA). We can expect also existence of the para isomer of $\mathrm{C}_{6}(\mathrm{O}) \mathrm{H}_{5} \mathrm{O}$, with the oxygen atom in the
ring between C^{3} and C^{4}, and single $\mathrm{C}^{1} \mathrm{C}^{2}, \mathrm{C}^{1} \mathrm{C}^{6}, \mathrm{C}^{3} \mathrm{O}$, and OC^{4} bonds, double $\mathrm{C}^{2} \mathrm{C}^{3}$ bond, and an unpaired electron on the π orbital distributed between $\mathrm{C}^{4}, \mathrm{C}^{5}$ and C^{6}. The meta isomer, on the other hand, is unlikely to be stable for the same reasons as m-benzoquinone or $m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H}) 6$.

Vibration Frequencies

The calculated UHF/6-31 G^{*} vibrational frequencies for $\mathrm{C}_{6} \mathrm{H}_{5}$, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$, benzoquinones, and different isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ are presented in Table 2. They were scaled by 0.893 for anharmonicity correction. The vibrational spectrum of $\mathrm{C}_{6} \mathrm{H}_{5}$ radical contains the most intensive vibration B_{1} at $675 \mathrm{~cm}^{-1}$. It corresponds to out-of-plane deformation of the C_{6} ring coupled with out-of-plane bending of CH bonds. Only this frequency has been observed experimentally, and the measured value is 710 $\mathrm{cm}^{-1} .^{18}$ Similar vibrational modes are present in the spectra of all of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ species. The stretching vibrations for the CH bonds have regular values of about 3000 cm^{-1}. A peculiar feature of the spectrum of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$ is an A_{1} vibration at $\left[262 \mathrm{~cm}^{-1}\right.$ corresponding to the stretch of the CO bond strongly coupled with symmetric $\mathrm{C}^{2} \mathrm{H}$ and $\mathrm{C}^{6} \mathrm{H}$ bending. The UHF method tends to underestimate this frequency, ${ }^{11 a}$ the experimental value is $1505 \mathrm{~cm}^{-1} .{ }^{19}$

In the spectrum of o-benzoquinone, the following vibrations are the most intensive: B_{1} out-of-plane ring deformation at 738 $\mathrm{cm}^{-1}, \mathrm{~A}_{1} \mathrm{CC}$ bond stretch at $\left[258 \mathrm{~cm}^{-1}\right.$, and symmetric A_{1} and asymmetric B_{2} stretching vibrations of the double $C O$ bonds at [806 and $1810 \mathrm{~cm}^{-1}$, respectively. The calculated IR spectrum of p-benzoquinone is quite different. The theoretical frequencies can be verified by comparing to those gleaned from experiments. ${ }^{20}$ Among the most intense peaks, the spectrum contains the ring torsion $\mathrm{B}_{3 \mathrm{u}}$ vibration at $88 \mathrm{~cm}^{-1}$ (the experimental value is 108 cm^{-1}) ${ }^{20 \mathrm{a}}$ in-plane CO bending $\mathrm{B}_{2 \mathrm{u}}$ at $401 \mathrm{~cm}^{-1}\left(409 \mathrm{~cm}^{-1}-\right.$ experiment), ${ }^{20 a}$ out-of-plane CH bending $\mathrm{B}_{3 \mathrm{u}}$ at $888 \mathrm{~cm}^{-1}$ (884 cm^{-1}-experiment), ${ }^{20 \mathrm{a}} \mathrm{CC}$ stretching vibration at $1284 \mathrm{~cm}^{-1}$ ([302 cm^{-1}-experiment, ${ }^{20 \mathrm{a}}$ and asymmetric B and symmetric Ag stretch of CO bonds at $1787 \mathrm{~cm}^{-1}$ ([660 cm^{-1}-experiment) ${ }^{20 \mathrm{a}}$ and [$804 \mathrm{~cm}^{-1}$ ($1688 \mathrm{~cm}^{-1}$-experiment), ${ }^{20 \mathrm{a}}$ respectively. The agreement between the theoretical and experimental data is good for qualitative estimates. The greatest disagreement with experiment, about $\left[25 \mathrm{~cm}^{-1}\right.$, at the RHF/6-31G* level, is found for the CO stretch vibrations, and it has been shown that the agreement is better when the multireference UNO-CAS $/ 6-3\left[\mathrm{G}^{*}\right.$ method with the optimized scaled $a b$ initio force field is employed. ${ }^{11 a .21}$

The isomer 1 of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ contains a COO fragment which is reflected in the vibrational spectrum by $\mathrm{A}^{\prime} \mathrm{OO}$ stretch at 919 cm^{-1} and $\mathrm{A}^{\prime} \mathrm{CO}$ stretch at $1220 \mathrm{~cm}^{-1}$. The $O O$ stretching vibration for the π-isomer 2 has the value of $946 \mathrm{~cm}^{-1}$. The CO stretch in $\mathbf{2}$ is coupled with in-plane CH bending and its frequency (286 cm^{-1}) shifts toward higher values as compared with that in 1 . There is another intense vibration involving the CO_{2} fragment, the bending CO_{2} triangle in the plane, perpendicular to the C_{6} ring, with the frequency of $827 \mathrm{~cm}^{-1}$.

In the spectra of 3 d and 3 q , where the OO bond is broken, the OO stretch is replaced by CO bending vibration with the frequency of $\left[064 \mathrm{~cm}^{-1}\right.$ for 3 d and $\left[047 \mathrm{~cm}^{-1}\right.$ for 3 q . The bending of CO_{2} triangle with respect to C plane occurs at $\left[092 \mathrm{~cm}^{-1}\right.$ for 3 d and at $\left[064 \mathrm{~cm}^{-1}\right.$ for 3 q . The CO stretching vibrations have lower

[^6](21) Liu, R.; Zhou, X.; Pulay, P. J. Phys. Chem. 1992, 96, 4255.
frequencies than that in 2,1 108 and $1118 \mathrm{~cm}^{-1}$ for the doublet and quartet structures, respectively.

The most pronounced feature of IR spectra for $\mathbf{4}$ and 5 is an upfield shift of one of the CH stretching vibrations. The CH bond in the $\mathrm{C}(\mathrm{H})(\mathrm{O})$ fragment is slightly elongated, and the corresponding frequency shifts to the band around $2850 \mathrm{~cm}^{-1}$. The CO single bond stretch vibrations have the frequencies of [$056 \mathrm{~cm}^{-1}$ in 4 and $1069 \mathrm{~cm}^{-1}$ in 5 . The stretching vibrations of CO double bonds are strongly coupled with the vibrations of $\mathrm{C}=\mathrm{C}$ bonds, and their frequencies are $\left[467\right.$ and $1495 \mathrm{~cm}^{-1}$ for 4 and 1679 and $788 \mathrm{~cm}^{-1}$ for 5.

The calculated vibrational spectra of the epoxy isomers 7-9 include a lot of vibrations of medium intensities without any strong peaks. The stretching vibrations of bridged $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bonds take place at 82 I and $959 \mathrm{~cm}^{-1}$ for 7 and 872 and $933 \mathrm{~cm}^{-1}$ for 8 as well as at $8\left[3\right.$ and $991 \mathrm{~cm}^{-1}$ for 9 . The vibrations corresponding to the stretching of terminal CO bond have distinct frequencies in the three isomers. In 8 , the bond is a double $\mathrm{C}=\mathrm{O}$, and the frequency is high, $\left[471 \mathrm{~cm}^{-1}\right.$. In 7 , the bond is closer to a single one, and the frequency, $1196 \mathrm{~cm}^{-1}$, is much lower. In 9 , the CO bond has an intermediate length and an intermediate vibrational frequency, $1274 \mathrm{~cm}^{-1}$.

The structures $\mathbf{1 0 - 1 3}$ have OH bonds which are reflected in the vibrational spectra by peaks at the $3600-3700 \mathrm{~cm}^{-1}$ band. 10 has several peculiar frequencies. The vibration A^{\prime} at $315 \mathrm{~cm}^{-1}$ corresponds to the stretch of the weak $\mathrm{O} \cdots \mathrm{H}$ hydrogen bond. Rotations of the OH group around the $\mathrm{C}^{2} \mathrm{O}$ paired with out-ofplane ring deformation ($\mathrm{A}^{\prime \prime}$) have the frequencies of 467 and 479 cm^{-1}. Bending vibrations of the OH group (A^{\prime}) occurs at 1189 and $\left[402 \mathrm{~cm}^{-1}\right.$. The frequency of the single CO bond stretch (A^{\prime}) is $12\left[0 \mathrm{~cm}^{-1}\right.$, while for the double ("one and a half") CO bond, the stretching vibrations (A^{\prime}) are strongly coupled with that for $\mathrm{C}=\mathrm{C}$ with the frequencies of $\left[310\right.$ and $13\left[I \mathrm{~cm}^{-1} . \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ (O) OH is an analog of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$, and the latter frequencies are close to the corresponding frequencies of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$.

The spectra of 11 and 12 are quite similar to that of 10 . The common features are the following: CO single bond stretching vibrations at [$244 \mathrm{~cm}^{-1}$ for 11 and 1 [$93 \mathrm{~cm}^{-1}$ for 12; OH bendings with the frequencies of 1127 and $1293 \mathrm{~cm}^{-1}$ in 11 and 1123 and [$376 \mathrm{~cm}^{-1}$ in 12; and the stretch of $\mathrm{C}=\mathrm{O}$ bonds at $\left[272 \mathrm{~cm}^{-1}\right.$ for 11 and [252 and $1276 \mathrm{~cm}^{-1}$ for 12. The vibration, which belongs to the stretching of the $0 \cdots \mathrm{H}$ hydrogen bond in $\mathbf{1 0}$, corresponds to bending of the OH group in 11 and 12. But the frequency does not differ much: $349 \mathrm{~cm}^{-1}$ in 11 and $329 \mathrm{~cm}^{-1}$ in 12. The difference in the IR spectra of $\mathbf{1 1}$ and $\mathbf{1 2}$ from that of in $\mathbf{1 0}$ is the lowering of the frequency for OH rotation by about $200 \mathrm{~cm}^{-1}$, to $263 \mathrm{~cm}^{-1}$ for 11 and $279 \mathrm{~cm}^{-1}$ for 12 . This is caused by the absence of the $\mathrm{O} \ldots \mathrm{H}$ hydrogen bond in the meta and para isomers of $\mathrm{C}_{6} \mathrm{H}_{4}-$ OOH . Also, the frequency of the OH bend in $\mathbf{1 1}$ and $\mathbf{1 2}$ shifts by about $50 \mathrm{~cm}^{-1}$ toward higher values, as compared to that of 10.

The calculated vibrational spectrum of 13 includes intense torsional vibrations of the OH bond with the frequencies of [93, 2 [2, and $246 \mathrm{~cm}^{-1} . \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OOH}) 13$ is an analog of the $\mathrm{C}_{6} \mathrm{H}_{5}$ radical, and the frequency of out-of-plane ring deformation, 696 cm^{-1}, is close to that in $\mathrm{C}_{6} \mathrm{H}_{5}\left(675 \mathrm{~cm}^{-1}\right)$. The other characteristic vibrations of 13 are as follows: CO bending at $760 \mathrm{~cm}^{-1} ; 00$ stretch at $1035 \mathrm{~cm}^{-1}$; CO stretch at [$223 \mathrm{~cm}^{-1}$; and the bending vibrations of the OH group at 140 I and $1429 \mathrm{~cm}^{-1}$. The most prominent features of the vibrational spectrum of 14 are the CO double bond stretching mode A^{\prime} at $\left[694 \mathrm{~cm}^{-1}\right.$, the stretching mode of the ring single $C O$ bond A^{\prime} at $1310 \mathrm{~cm}^{-1}$, and the bending vibration of the COC fragment A^{\prime} with the frequency of 976 cm^{-1}.

Speculation on Possible Mechanisms of the $\mathbf{C}_{6} \mathbf{H}_{5}+\mathbf{O}_{\mathbf{2}}$ Reaction

The reaction of $\mathrm{C}_{6} \mathrm{H}_{5}$ with O_{2} initiates by formation of $\mathrm{C}_{6} \mathrm{H}_{5}-$ OO and at high temperatures gives various products including

Table 2. UHF/6-31G* Vibrational Frequencies (Scaled by 0.893 , in cm^{-1}) and Intensities (in Brackets. in $\mathbf{k M} / \mathrm{mol}$) for Different Isomers of $\mathbf{C}_{6} \mathbf{H}_{5} \mathrm{O}_{2}$

		$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$		$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$														
$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$	0	p-	1	2	3d	3q	4	5	6	7	8	9	10	11	12	13	14
361 [0.0]	191[3]	69[0.0]	88[18]	34[0.1]	107[2]	81[1]	68[1]	43[2]	76[9]	497i [11]	201 [1]	128[5]	135[6]	160[1]	134[2]	190[4]	46[8]	76[0.0]
389[2]	350[0.0]	223[8]	228[0.0]	228[0.4]	273[0.0]	198[0.2]	230[0.0]	194[4]	218[2]	149[12]	248[1]	255[7]	232[4]	254[0.2]	263[153]	205[2]	193[40]	109[9]
569[0.3]	427[10]	344[6]	$338[0.0]$	261 [1]	376[12]	333[6]	365[0.0]	261[5]	290[9]	213[3]	378[4]	$310[2]$	$376[31$	315[20]	312[0.0]	279[151]	212[44]	335[1]
571 [0.7]	449[1]	402[0.0]	401[38]	409[0.0]	400[1]	363[1]	367[7]	378[1]	$411[1]$	359[19]	413[5]	419[18]	411[10]	410[1]	349[14]	329[20]	246[83]	344[0.3]
613[14]	435[0.2]	418[4]	431 [0.0]	433[3]	421 [0.0]	369[9]	375[8]	439[7]	431[28]	393[27]	462[11]	449[3]	423[9]	432[0.1]	358[0.3]	390[1]	382[2]	398[3]
675[77]	$558[0.1]$	463[1]	437[0.0]	494[4]	423[3]	389[5]	378[5]	449[11]	455[1]	434[10]	507[1]	502[3]	482[5]	467[48]	434[1]	474[1]	416[2]	476[5]
$759[0.0]$	607[28]	529[0.1]	502[1]	$598[1]$	549[0.0]	536[12]	538[17]	501[7]	490[6]	452[7]	595[10]	528[11]	537[5]	479[104]	444[7]	483[4]	463[1]	495[10]
821 [0.7]	715[61]	535[23]	579[0.0]	603[0.4]	554[21]	545[2]	543[1]	535[4]	571[2]	477[16]	635[4]	610[21]	612[24]	536[4]	474[6]	501[1]	573[2]	604[16]
884[0.2]	744[0.0]	661[3]	721 [0.4]	680[11]	658[47]	563[4]	572[5]	642[5]	679[6]	523[20]	678[4]	660[15]	650[2]	542[1]	$601[1]$	542[2]	579[0.4]	676[48]
894[0.0]	765[1]	738[111]	734[0.0]	758[87]	692[1]	634[61]	634[55]	690[68]	729[1]	638[14]	735[39]	727[5]	734[14]	644[8]	643[3]	606[12]	624[1]	689[3]
920[0.0]	831[10]	771[0.0]	747[0.0]	7881151	696[0.0]	650[0.5]	641 [0.0]	717[13]	775[1]	743[17]	779 [8]	770[46]	737[18]	708[20]	733[4]	700[5]	696[78]	722[19]
946[2]	894[0.0]	847[0.1]	771 [0.0]	842[0.0]	762[0.0]	721 [0.1]	716[0.2]	785[7]	823[15]	785[35]	821 [76]	803[2]	793[15]	710[70]	736[22]	713[36]	760[19]	780[18]
972[1]	$909[0.2]$	877[0.0]	888[122]	919[12]	827[51]	743 [1]	744[0.3]	871 [0.2]	875[49]	841[11]	855[12]	872[26]	813[31]	787[0]	771 [0.3]	771[43]	785[3]	781[29]
999[0.6]	922[0.1]	$906[1]$	918[16]	974[0.2]	884[2]	873[0.0]	885[0.0]	900[12]	921[36]	865[71]	908[12]	893[5]	911[6]	847[6]	$779[84]$	805[7]	869[3]	868[1]
1102[0.2]	945[1]	1111[1]	1012[0.0]	982[0.0]	888 [0.0]	882[0.2]	891 [0.4]	905[0.7]	996[12]	958[11]	959[19]	914[6]	915[8]	866[7]	866[0.2]	892[11]	910[0.2]	879[6]
1110[0.2]	1013[3]	1023[0.0]	1014[0.0]	1000[1]	896[4]	899[3]	896[4]	917[5]	1021[0.3]	1011[7]	979[4]	933[11]	931[18]	905[1]	889[0.1]	894[0.2]	920[1]	894[1]
1244[0.1]	1087[11]	1095[26]	1055[46]	1005[3]	915[0.2]	916[0.2]	919[0.3]	966[6]	1030[14]	1016[3]	985[3]	1017[16]	991[35]	944[5]	943[0.7]	931[1]	956[6]	904[0.5]
1251[1]	1106[0.0]	1125[17]	1134[0.0]	1053[4]	946[1]	980[4]	960[2]	1056[30]	1069[51]	1039[29]	998[0.0]	1059[19]	1062[15]	1047[0.2]	1043[12]	1013[91	1035[4]	976[38]
1392[6]	1247[21]	1152[1]	1198[0.0]	1091[1]	1010[4]	1064[44]	1047[53]	1081[5]	1121[10]	1079[51]	1098[10]	1092[4]	1086[7]	1102[9]	1088[27]	1091[16]	1055[6]	1108[69]
1413[8]	1262[31]	1258[79]	1284[106]	1129[13]	1089[0.4]	1082[24]	1064[158]	1120[6]	1161[71	1109[76]	1156[11]	1126[2]	1135[1]	1189[30]	1127[123]	1123[162]	1108[1]	1147[30]
1463[1]	1276[2]	1354[0.2]	1348[5]	1148[14]	1099[0.0]	1092[123]	1078[0.3]	1196[39]	1239[38]	1178[26]	1170[5]	1230[8]	1228[21]	1210[216]	1241[14]	1193[103]	$1180[71$	1217[91]
1488[1]	1392[1]	1397[40]	1371 [0.0]	1192[44]	1248[13]	1108[12]	1118[4]	1271[0.3]	1316[20]	1188[54]	1196[30]	1244[21]	1247[9]	1257[17]	1244[94]	1252[42]	1223[39]	1310[214]
2994[0.1]	1399[2]	1618[1]	1638[10]	1220[106]	1275[2]	1176[15]	1137[0.2]	1310[3]	1375[43]	1230[1]	1263[16]	1304[6]	1274[29]	1310[6]	1272[36]	1272[46]	1255[19]	1338[3]
3002[5]	1458[25]	1662[0.5]	1658[0.0]	1315[1]	1286[81]	1268[0.1]	1272[2]	1369[6]	1378[12]	1277[32]	1357[12]	1342[4]	1338[41]	1311[731	1293[61]	1280[36]	1389[1]	1388[23]
3012[29]	1464[14]	1806[295]	1787[656]	1454[5]	1369[1]	1343[1]	1338[3]	1394[5]	1434[32]	1346[62]	1387[5]	1380[12]	1363[4]	1402[59]	1384[27]	1376[33]	1401[30]	1408[15]
3018[45]	3000[0.1]	1810[101]	1804[0.0]	1489[76]	1421[59]	1398[12]	1335[9]	1413[49]	1653[0.1]	1393[44]	1425[22]	1432[17]	1376[1]	1428[30]	1409[2]	1409[0.2]	1429[110]	1458[6]
3023[7]	3011[13]	3010[6]	3027[2]	1610[36]	1457[7]	1446[2]	1450[0.4]	1467[25]	1679[5]	1426[131]	1616[2]	1438[4]	1413[13]	1474[4]	1462[33]	1448[13]	1471[16]	1494[42]
	3020[26]	3021[11]	3027[0.0]	1611[19]	1479[3]	1457[1]	1461[3]	1495[12]	1788[394]	1477[89]	1665[0.1]	1471[3]	1452[8]	1506[93]	1510[184]	1513[139]	1505[81]	1693[241]
	3030[18]	3039[6]	3043[6]	3005[0.0]	3006[0.0]	3002[1]	3001 [1]	2855[37]	2836[46]	2333[107]	2998[8]	2991[14]	2982[14]	3008[31	2989[17]	3010[81	3003[1]	2992[3]
	3032[2]	3042[4]	3044[0.0]	3015[16]	3012[14]	3007[8]	3005[5]	3004[5]	3008[5]	3022[0.2]	3005[6]	3004[5]	2995[42]	3020[15]	3023[3]	3013[61	3013[131	3002[13]
				3027[26]	3025[24]	3020[18]	3018[11]	3015[14]	3009[3]	3037[5]	3014[19]	3005[27]	3009[14]	3031[14]	3033[5]	3031[9]	3022[26]	3017[147]
				3035[8]	3036[10]	3027[20]	3022[28]	3026[18]	3034[10]	3051[1]	3025[24]	3022[21]	3030[12]	3036[7]	3038[5]	3038[9]	3029[13]	3037[4]
				3064[1]	3038[0.4]	3033[71	3030[11]	3034[5]	3036[0.2]	3055[3]	3034[10]	3033[6]	3031[1]	3612[36]	3676[93]	3674[78]	3637[82]	3063[12]

atomic oxygen and hydrogen. ${ }^{1,2.6 .13}$ The result of our calculations of possible isomers of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ radical lets us speculate the following reaction mechanisms producing H and O atoms.

Mechanism 1. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}$ can eliminate an oxygen atom to produce $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}+\mathrm{O}$. Interestingly, the reaction is symmetryforbidden (within the C_{s} symmetry), and the reverse reaction of two radicals, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\left({ }^{2} \mathrm{~B}_{1}\right)$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, might have a barrier. When we consider the separated $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\left({ }^{2} \mathrm{~B}_{1}\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ system in the doublet state, the unpaired π-electron of the ring is formally paired with $\mathrm{p} \pi$-electron of the oxygen atom, and the $\mathrm{p} \sigma$-electron of O remains unpaired. Hence, the ground electronic state of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}+\mathrm{O}$ is ${ }^{2} \mathrm{~A}^{\prime}$, while that of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} 1$ is ${ }^{2} \mathrm{~A}^{\prime \prime}$. After the elimination, the oxygen atom could come back and attack $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$ at the ortho, para, or some bridging position to produce $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$ $(\mathrm{H})(\mathrm{O}) 4$ or 5 or some of the epoxy isomers 7-9. 7-9 could rearrange to form 4 and 5 . Elimination of hydrogen atom from o - and $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H})$ would give o - or p-benzoquinone, i.e., $o / p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}$. If the reaction occurs by this mechanism, one would observe a delay in the appearance of hydrogen atoms with respect to the appearance of O atoms.
Mechanism 2. At first step $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO} 1$ rearranges to give the π-complex 2, which can also be formed directly from the $\mathrm{C}_{6} \mathrm{H}_{5}$ $+\mathrm{O}_{2}$ reaction. Then, the $\mathrm{O}-\mathrm{O}$ bond breaks to form 3d. One of the oxygen atoms either dissociates or starts to migrate around the carbon ring. The sequence of its migration can give ortho 4 by $3 \mathrm{~d} \rightarrow 7 \rightarrow 4$ or, further, para 5 by $4 \rightarrow 8 \rightarrow 6 \rightarrow 9 \rightarrow 5.4$ or 5 would eliminate either hydrogen or oxygen atom. In this case, they would appear without delay. Our calculations did not show any intermediate or transition state of dioxetane species such as the

structure ${ }^{6}$ between 2 and 5 . Moreover, the $2 \rightarrow 5$ transformation is forbidden by symmetry: The singly occupied B_{1} orbital of 2 belongs to the A^{\prime} irreducible representation if only one plane of symmetry, perpendicular to the ring plane, remains in the system. Therefore, the electronic state of 2 corresponds to ${ }^{2} \mathrm{~A}^{\prime}$, while for 5 , it is ${ }^{2} \mathrm{~A}^{\prime \prime}$, and no C_{s} symmetric transition state can exist between 2 and 5.

Mechanism 3 involves the abstraction of the hydrogen atom by the terminal oxygen in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}$ from the adjacent C atom with the formation of $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OOH})$ 13. The latter would then rearrange to o-hydroxyl phenoxy radical $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{OH}) 10$ by intramolecular migration of the OH group. Elimination of hydrogen from the OH group in 10 would give the o-benzoquinone. In addition, the $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OOH})$ radical may dissociate to produce $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$ and OH ; the latter can react with $\mathrm{C}_{6} \mathrm{H}_{5}$ to form $\mathrm{C}_{6} \mathrm{H}_{5}-$ OH . The dissociation of the latter would produce a hydrogen atom and the phenoxy radical, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$.

Recently, Carpenter proposed another mechanism for the decomposition of the phenylperoxy radical. ${ }^{9}$ It involves the $1 \rightarrow$ $\mathbf{2} \rightarrow \mathbf{7} \rightarrow \mathbf{1 4}$ pathway followed by the dissociation of the sevenmember ring isomer into $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{\bullet}+\mathrm{CO}_{2}$. However, this mechanism does not lead directly to the appearance of oxygen or hydrogen atoms in the system.

In our laboratory, an extensive effort is underway to calculate the energies and structures of the transition states of the ratecontrolling steps in the reaction paths identified above. We hope to provide a more realistic interpretation of high-temperature

[^7]$\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ kinetic data, which are gradually becoming available in the literature. ${ }^{6,13}$

Conclusions

The o-hydroxyl phenoxy radical $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{OH}) 10$ was found to be the most stable isomer of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ species; the exothermicity of the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{OH}) 10$ reaction was calculated to be $111 \mathrm{kcal} / \mathrm{mol}$. p - and $m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{OH}), 11$ and 12, lie by 4 and $6 \mathrm{kcal} / \mathrm{mol}$ above 10. The seven-membered ring isomer 14 is 19 $\mathrm{kcal} / \mathrm{mol}$ higher than 10. The m-epoxy $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}(\mathrm{O})_{\text {br }}$ isomer 8 is next on the stability scale, $35 \mathrm{kcal} / \mathrm{mol}$ above 10 . It is followed by the p-epoxy structure $9, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H}) 5, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}(\mathrm{O})(\mathrm{H})$ 4 , and the o-epoxy isomer 7 , with energies $46,50,56$, and 62 $\mathrm{kcal} /$ mol higher than 10, respectively. The phenyl peroxy radical $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO} 1$, the initial adduct of the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ reaction, is 70 $\mathrm{kcal} / \mathrm{mol}$ less stable than 10 . The π-complex 2 and the doublet $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{O}) \mathrm{O}$ structure 3d have the relative energies of 84 and 98 $\mathrm{kcal} / \mathrm{mol}$, respectively. 13 is the least stable isomer in doublet electronic state ($[02 \mathrm{kcal} / \mathrm{mol}$ above 10), while the quartet structure 3 q is $[06 \mathrm{kcal} / \mathrm{mol}$ higher than the global minimum.

It should be mentioned that the PUMP3//UHF/6-31G* method may not be quantitatively accurate for description of relative energies of various isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$. For instance, it is very difficult with the MP perturbation theory to get a balanced treatment of the relative energies of systems having different numbers of rings, so the stabilities of the double-ring structures $\mathbf{2 , 7 , 8}$, and 9 might change when configuration interaction methods would be employed. However, the present numerical results have provided us a sound theoretical basis for the future elucidation of the mechanism of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$ reaction.

The most stable product of the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ reaction, 10 , cannot be formed directly from the reactants. The conceivable mechanisms for its formation at higher temperatures are the following: $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2} \rightarrow 1 \rightarrow \cdots \rightarrow 4 \rightarrow 10$ and $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2} \rightarrow 1 \rightarrow 13 \rightarrow$ 10. o-Benzoquinone can be produced from 4 or 10 by hydrogen elimination. The elimination of the H atom from 5 can give p-benzoquinone. However, 5 cannot be formed directly via a highly symmetric

transition state, but it might be formed by a stepwise process involving the initial insertion of the carbon atom into the $\mathrm{O}=0$ bond, followed by the migration of one oxygen around the ring.

The relatively high stability of 1 , with $D\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}_{2}\right)=4[\mathrm{kcal} /$ mol, is fully consistent with the result of our recent successful kinetic measurement for the $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{O}_{2}$ reaction in the gas phase using the cavity-ring-down technique (see previous paper in this issue). ${ }^{22}$ In this study, carried out under the conditions of 297 $\mathrm{K} \leq T \leq 473 \mathrm{~K}$ and 20 Torr $\leq P \leq 80$ Torr, the formation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO}$ was found to have negligible temperature and pressure dependence. This finding is in full agreement with the result of an RRKM calculation based on the calculated energetics and molecular parameters of $\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OO} .{ }^{22}$

Acknowledgment. The authors gratefully acknowledge the support of this work by the Division of Chemical Sciences, Office of Energy Sciences, DOE (contract no. DE-FGO5-91ER [4192) and to the Cherry L. Emerson Center for Scientific Computation for the use of various programs and computing facilities. A fruitful discussion with Dr. C. F. Melius of Sandia National laboratories, Livermore, CA is much appreciated.

[^0]: - Abstract published in Advance ACS Abstracts. September 15, 1994.
 (1) Glassman, I. Combustion, 2nd ed.; Academic Press: New York, 1986.
 (2) Brezinsky, K. Prog. Energ. Combust. Sci. 1986, 12, 1.
 (3) Bittner, J. D.; Howard, J. B.; Palmer, H. B. NATO Conference Series. 6: Materials Science; Plenum Press: New York, 1983; Vol. 7, p 95.
 (4) Colussi, A. J.; Zabel, F.; Benson, S. W. Int. J. Chem. Kinet. 1977, 9, 161.
 (5) Lin, C.-Y.; Lin, M. C. J. Phys. Chem. 1986, 90, 425.
 (6) (a) Herzler, J.; Frank, P. Third International Conference on Chemical Kinetics; NIST, Gaithersburg, MD, July 12-16, 1993. (b) Frank, P.; Herzler, J.; Just, Th.; Wahl, C.; 25th Symposium (International) on Combustion, submitted for publication.

[^1]: (7) Tanaka, K.; Sakai, S; Tomiyama, S.; Nishiyama, T.; Yamada, F. Bull. Chem. Soc. Jpn. 1991, 64, 2677
 (8) Ladik, J.; Wendel, M.; Otto, P.; Liu, S. C. J. Mol. Struct. (THEOCHEM) 1987, 37, 1.
 (9) Carpenter, B. K. J. Am. Chem. Soc. 1993, 115, 9806.
 (10) Hehre, W.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
 (11) (a)Chipman, D. M.; Liu, R.; Zhou, X.; Pulay, P. J. Chem. Phys. 1994, 100,5023 . (b) Liu, R.; Morokuma, K. Ab InitioStudy on the Mechanism of Thermal Decompostiion of the Phenoxy Radical, manuscript in preparation.

[^2]: (12) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.;Schlegel, H. B.; Robb, M. A.; Reglogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzales, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. GAUSSIAN 92; Gaussian, Inc.; Pittsburgh, PA, 1992.

[^3]: (13) Lin, C.-Y. Ph.D. Dissertation, The Catholic University of America, 1986.
 (14) Melius, C. F., private communication.
 (15) (a) Murray, R. W.; Feyaraman, R.J. Org. Chem. 1985, 50, 2874. (b) Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J. O.; Pater, R. H. J. Org. Chem. 1980, 45, 4758. (c) Bunnelle, W. H. Chem. Rev. 1991, 91, 335.

[^4]: (16) Bach, R. D.; Andrés, J. L.; Owensby, A. L.; Schlegel, H. B.; McDouall, J. J. W. J. Am. Chem. Soc. 1992, 114, 7207, and references therein.

[^5]: ${ }^{a}\left\langle S^{2}\right\rangle$ before projection. Values after projection are 0.75 for doublet states and 3.75 for quartets. ${ }^{b}$ ZPE are calculated at the UHF/6-31G* level and scaled by 0.893 . ${ }^{c}$ The relative energies are calculated with ZPE (scaled UHF/6-31G*) corrections with respect to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2}$. ${ }^{d}$ The total energies (in hartree).

[^6]: (17) Patai, S., Ed. The Chemistry of the Quinonoid Compounds; Wiley: New York, 1974.
 (18) Jacox, M. E. J. Phys. Chem. Ref. Data 1984, 13. 945.
 (19) Tripathi, G. N. R.; Schuler, R. H. J. Chem. Phys. 1984, 81.113.
 (20) (a) Davies, M.; Prichard, F. E. Trans. Faraday Soc. 1963, 59, 1248. (b) Stammereich, H.; Forneris, R. Z. Naturforsch. 1952, 7A, 756. (c) Anno, T.; Sado, A. Bull. Chem. Soc. Jpn. 1958, 31, 734. (d) Becker, E. D.; Charney, E.; Anno, T. J. Chem. Phys. 1965, 42, 942 . (e) Dunn, T. M.; Francis, A. H. Mol. Spectrosc. 1974, 50, 1. (f) Stammreich, M.; Teixeira San, Th. J. Chem. Phys. 1965, 42, 920.

[^7]: (22) Yu, T.; Lin, M. C. J. Am. Chem. Soc., previous paper in this issue.

